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Abstract-The power of singularity of the temperature gradient at a macrocrack tip is analyzed in this 
work. For a crack in an infinite medium. Williams’ method of eig~function expansions is extended to 
heat conduction problems with a crack and comparison with the complex function approach is made. The 
intensity factor of temperature gradient (IF%) is introduced to quantify the thermal energy cumulated 
in the neighborhood of a macrocrack tip. As an entirety, the power of singularity of the temperature 
gradient is analyzed for a crack in both isotropic and orthotropic media, and an interfacial crack between 
dissimilar materials. It is shown that the power of singularity of the temperature gtadient is not affected 
by the discontinuous jumps of the thermal properties across the material interface, while that for a crack 
in an orthotropic medium depends on the ratio of thermal conductivities in the principal directions of 

material orthotropy. 

INTRODUCTION 

THE CONCEPT of damage tolerance is widely used in 
structural design which evaluates the structural per- 
formance in transferring loads under crisis si&aiions. 
A macrocrack is one of the most popular mechanisms 
considered for this purpose and the load-bearing 
capacity of the material in the neighborhood of the 
crack tip is measured by the stress intensity factor 
[I]. For layered composites with various stacking 
sequences of the material layers, for example, the opti- 
mal stacking sequence is determined such that the 
stress intensity factor at the crack tip under the same 
geometrical and loading conditions attains the mini- 
mum value among all the possible cases with different 
stacking sequences. Another approach employing the 
deformation energy in the near-tip area to serve the 
same purpose has been discussed in ref. [2]. 

vicinity ofa crack tip. According to a previous analysis 
by Sih (41, the near-tip temperature in a homogeneous 
Fourier’s solid behaves as Jr and the temperature 
gradient in the radial direction consequently behaves 
as l/,/r. If we define the intensity factor of the tem- 
perature gradient (IFTG) at the crack tip in the same 
manner as those in equation (1) 

IFTG = heir 2,,/rT, (3 

a solid with better energy-bearing capacity should be 
the one possessing a lower value of IFTG under the 
same geometrical and loading conditions. Obviously, 
such a concept lies again in the singular behavior of 
the temperature gradient as the crack tip is closely 
approached. 

When a crack tip is closely approached, due to the 
abrupt change of the geometrical curvature, both the 
stresses and the strain energy density approach inlin- 
ity. For an elastic solid, the near-tip stress behaves as 
l/Jr, with r being the radial distance measured from 
the crack tip, while the strain energy density d W/d Y 
behaves as l/r [3]. The stress intensity and the strain 
energy density factors are defined as 

K = !Ly Jru, and S = ~~~r(dW/d~) (1) 

with etw being the circumferential stress component. 
Clearly, the concept of the intensity factors K and S 
relies upon the singular behavior of the near-tip stress 
and energy density. 

Bearing these observations in mind, the present 
work aims at the derivation of the singular behavior 
of the temperature gradient in the vicinity of a macro- 
crack tip. In addition to that in an infinite medium, 
the present study also includes an interfacial crack 
between dissimilar materials and the effect of material 
orthotropy. A method of eigenfunction expansion 
developed by Williams [5] and extended recently in 
ref. [6] will be used in the analysis to determine the 
power of singularity and the angular distribution of 
the tempe~ture gradient in the near-tip region with- 
out attributing to the solution of dual integral equa- 
tions [I] or the complex potential functions [4]. 

ANALYSIS 

In a parallel philosophy to the damage tolerance (a) A crack in an infinite medium 
concept in soiid mechanics, the ePrergy bearing In making contact with the analysis employing the 
capacity of a solid medium could be assessed by the complex potential functions [4], we first consider a 
singular behavior of the temperature gradient in the crack in an infinite medium subject to remote heat 
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NOMENCLATURE 

(1 half length of the crack [m] T temperature [K]. 
C,, coefficients in the series solutions, i = I-4 

F” eigenmode for the angular distribution of Greek symbols 
temperature 0 polar angle [deg] 

k thermal conductivity [w m- ’ K- ‘1 A” eigenvalues, n = 0, 1, 2,. . . 
krt ratio of the principal values of the Q stress components [Pa]. 

orthotropic thermal conductivity, k,/k, 
n integers from 0 to % Superscript and subscripts 

40 heat flux applied remotely [W m- ‘1 x, Z,Y/@ with rl = r, 0 
K stress intensity factor [Pam”‘] X”) physical quantity X in the material layer i, 
r radial distance measured from the crack i= 1.2 

tip [ml X, component of X in the q-direction with 
S strain energy density factor [J m- ‘1 r] = r, 0. 

fluxes q,, as shown in Fig. I. The half length of the 
crack is denoted by a and the solid medium in the first 
case is assumed to be homogeneous and isotropic. The 
temperature at the crack surface is kept at a constant 
value which is assumed to be zero without loss in 
generality. With respect to the polar coordinates (r, 0) 
centered at the crack tip, the energy equation under a 
steady state is simply a Laplace equation 

V*T(r,Q) = T,,+(llr)T,+(l/r*)~~ 20 (3) 

and the boundary conditions to be satisfied in the 
near-tip region are 

T=O ato= fn. (4) 

The problem formulated in this manner clearly dis- 
plays an eigenvalue problem. Because the Laplace 
equation is homogeneous with respect to the radial 
distance r, a product form for T satisfying equation 
(3) can be assumed 

T(r,@ = i &+‘F,(e) (5) 
n=O 

with i., being the eigenvalues to be determined. Sub- 
stituting equation (5) into equation (3), a second- 
order ordinary differential equation governing the 
function F,(e) is obtained 

of the crack 

F,.,,+(i,+ I)*F, = 0 (6) 

which can be integrated directly to give 

F,(O) = C,,,cos[(i,+ ue]+cZ,sin[(i.,+ I)el. (7) 

From boundary conditions (4), two algebraic equa- 
tions for C,, and C?,, are rendered 

C,, cos [(A. + I)n] + C2,, sin [(i.” + I)n] = 0 

C,, cos [(& + I)1 - Cln sin [(An + l)~] = 0 (8) 

which gives the following eigenequation for the exis- 
tence of a non-trivial solution : 

sin [2(1,+ I)n] = 0 or i, + I = n/2, 

for n = 0, 1,2,. . . (9) 

Substituting equation (9) into equation (7) and the 
result into equation (S), the temperature T(r, e) is 

T(r, e) = f r”12[C,, cos (d/2) +Ch sin (n0/2)] 
“=O 

(10) 

where we can show from equations (8) and (9) in a 
straightforward manner that C,, = 0 for n being even 
and Ch = 0 for n being odd. Although the remote 
heat flux applied to the solid is not incorporated in 
equation (lo), it provides sufficient information as far 
as the near-tip temperature gradient T,, is concerned. 
By taking the derivative with respect to r on equation 
(IO) and expanding the resulting series, we have 

T,,(r, e) = %os (e/2) +r”[C12 sin 01 
2Jr 

0 
Qa 

+r[(3/2)C,, cos (30/2)1+ O(f”) for n a 2. (I 1) 

In the vicinity of the crack tip with r approaching 
zero, clearly, the first term in equation (11) dominates 
and asymptotically 

FIG. 1. A macrocrack with length ?u in an infinite medium C,, 

subject to symmetrical heat fluxes applied remotely. 
T.,(r, 6) Y 3/ cos (g/2) as r + 0. (12) 

r ‘V 
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Clearly, the temperature gradient presents a l!,/r- 
type of singularity at the crack tip. The power of 
singularity of the near-tip temperature gradient is thus 
l/2. 

In summary, Williams’ method illustrated above 
reduces the crack problem from a boundary value 
problem to an eigenvalue problem. The eigenvalues 
obtained in this manner reveal the r-dependency of 
the thermal lield while the eigenfunctions relate to the 
angular distributions of the thermal field around the 
crack tip. The amplitude of the eigenfunction such as 
the coefficient C, , in equation (12), however, cannot 
be determined in general by the method. This is the 
biggest disadvantage of the method in comparison 
with the dual-integral equation and the complex func- 
tion methods where the thermal field in the near-tip 
region can be determined as an entirety. It can be seen 
clearly that the remote boundary condition of qo, for 
example, cannot be taken into account in the present 
approach. The method thus implies the same singular 
behavior of the temperature gradient in the near-tip 
region for the cracked solid subject to a remote heat 
flux q. or a temperature gradient T,:.. 

Nevertheless, the coefficient C,, could be deter- 
mined from the consideration of dimensional con- 
sistency under limited conditions. As shown by the 
configuration of the cracked solid in Fig. 1, the co- 
efficient C,, should be a function of the hztlf crack 
length a, the thermal conductivity k, and the heat flux 
q,, applied remotely. This observation essentially leads 
to c , , = q,,./a/k which has dimensions of deg m- ‘I’. 
For the same cracked solid subject to a remote tem- 
perature gradient T$, as another example, the co- 
efficient C, , takes the form of ,/u( T,$) from the same 
consideration. With these expressions of C,). the 
results shown by equation (12) are the same as those 
obtained by Sih [4] employing the Muskhelishvili for- 
mulation of the analytic complex functions. In front 
of the crack tip at 0 = 0, the temperature gradient T., 
reaches a maximum value and the intensity factor 
of the temperature gradient in the two cases can be 
obtained as 

IFTG = 52&T., = C,, = 

I 

qdJa/k, for the case of remote heat flux 

( Tp,>& for the case of remote temperature gradient. 

(13) 

(b) An interfacial crack between dissimilar materials 
By extending the method of eigenfunction expan- 

sions adopted in (a), the singular behavior of the 
near-tip temperature gradient can be analyzed for an 
interracial crack between dissimilar materials, as 
shown by Fig. 2. The thermal conductivity for the two 
contact material layers is respectively k(” and k’*‘. 
Under a steady state, the temperature distribution in 
each material layer is represented by the combination 
of equations (5) and (7) 

Interfacial Crack Material 1. k”’ 

r ,e ,,,_, 
l-14 

Material 2. k”’ 

FIG. 2. An intetfacial crack between dissimilar materials with 
thermal conductivities k”’ and k”‘. 

T”‘(r,@ = f ti*+‘[Clncos(i+l)O 
1-O 

+ C, sin (;., + 1)0], for material 1 

T(“(r, e) = f tin+ ‘[c,, cos (in + i)e 
n=O 

+ Cd,, sin (j., + i)e], for material 2. (14) 

Determination of the eigenvalues 1, in this case 
depends on the following boundary conditions : 

T") = 0 at fI = R, the top surface of the crack 

P2) = 0 at 0 = --n, the bottom surface of the crack 
p” = T’2’ and k”‘T!,” = k’“?;) 

at 0 = 0, the material interface. (15) 

Substituting equations (14) into equations (15) renders 

sin[2(1,,+l)n]=O or 1,+1=n/2, for n=O. 1, 2 ,... 

C,” = C,“, C, = [k’“/k”‘]Czn, C,, = 0 

for n being even integers, 

Czn = 0 for n being odd integers. (16) 

Note that the eigenvalues E., obtained in this case are 
the same as those obtained in the previous case, refer 
to equation (9), and consequently the r-dependency 
of the near-tip temperature and its gradient is not 
affected by the thermal properties of the contacting 
material layers. With equations (15) and (16), the 
asymptotic form of the temperature gradient in each 
material layer can be expanded to give 

T(i) = 50s (O/2) +r”[C12 sin 01 
2J’ 

+Jr[(3/2)C, 3 cos (3e/g + o(P*) 

T!,‘) = 5~0s (0;2) +r”[C22(k(‘)/k(‘)) sine] 
2J’ 

+ Jr[(3/2)C,,cos(30/2)]+O(r") (17) 

with n > 2. In the near-tip region with r approaching 
zero, similarly, the asymptotic expressions for the tem- 
perature gradients are 

T!) z 5~0s (e/2) 
2Jr 

and T>‘) 2 5~0s (e/2) 
2-h 

as r-0. (18) 

Equation (18) has exactly the same form as equation 
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(12) for a crack in a homogeneous medium. It implies 
that the power of singularity at the interfaciat crack 
tip is not affected by the thermal properties of the 
material layers in contact. Except for the involvement 
in the amplitude of C, i, the effect of the thermal 
conductivities, refer to equation (I 7), enters the higher 
order eigenmodes of the angular distribution of T!:’ 
which vanishes as r approaches zero. Due to the pres- 
ence of two values of thermal conductivity in each 
material layer in this case, unfortunately, the co- 
efficient C, , cannot be determined by the same con- 
sideration of dimensional consistency as that given in 
case (a}. The thermal conductivity X- involved in the 
first of equations (13) for the present case should be 
replaced by an effective value which is a combined 
function of both k’” and k’*‘. Its exact form, however, 
cannot be determined from this approach. 

(c) A crack in an orthotropic material 
For a macrocrack in an orthotropic medium with 

k, and k, being the principal values along the axes 
of material orthotropy, the energy equation can be 
written as 

?,,~(llr)T,+(k,)-‘(l/r’)TyH = 0 (19) 

with kR = k,/k#. Assuming the same form as equation 
(5) for T(r, Q), the differential equation governing the 
function of F,,(B) in this case takes the fo2m’ 

Fn,t)H+kR(irtf I)?& = 0 (20) 

which has the solution 

F,(O) = C,,*cos~~k~(;.“+l)~] 

+ Cz, sin [JkR(i, f 1)0]. (21) 

From the boundary conditions at the crack surfaces, 
equation (4). the eigenequation for the eivenvalues I, 
is 

sin [2Jk,(L, + I)n] = 0 or i, + 1 = n/2,/kR, 

forn=O, 1,2.... (22) 

and the coellicients C in = 0 for n being even and 
C?, = 0 for n being odd. Equation (22) clearly indi- 
cates that the eigenvalues, and hence the r-dependency 
of the temperature gradient, depend on the ratio of the 
principal values of orthotropic thermal conductivity. 
Substituting the eivenvalues in equation (22) into the 
series for the temperature gradient, it follows that 

+ c22 r(l -Jkdiv’kr sin (0) 

JkR 

3c 
_-!?r13-Z./M ‘,‘kRcos(3@2) 

+ 2Jk, 

01 I 

l/4 1 2 3 I 5 

4 
FIG. 3. The variation of the power of singularity of the 
near-tip temperature gradient T,, with respect to the ratio of 

The singular terms in equation (23) depend on the 
range of the conductivity ratio kR. For 0 < kR < l/4, 
all the terms are well behaved and the temperature 
gradient T., approaches zero in the near-tip region 
with r + 0. For l/4 < k, < I, the first term becomes 
singular while the other terms approach zero as r 
approaches zero. The asymptotic form of equation 
(23) in this case is thus 

T, ‘c 
C-1, - r-(Z\‘kR- l%‘kn cos (e/2). 

2,/k, 
as r __, 0. (24) 

In the range of I < kR c 2.25, the first two terms 
in equation (23) become singular but the first term 
diverges at a faster rate than the second term and the 
leading term in equation (23) again dominates in the 
near-tip region. This argument can be applied to the 
subsequent terms in equation (23) and it is informative 
to conclude that the near-tip temperature gradient is 
indeed represented by equation (24) in general. 

In the present case with material orthotropy, the 
singufarity of the temperature gradient exists at the 
crack tip only if 

2 Jk, > 1 or k,/kO > j. (25) 

For the orthotropic material with kR being smalfer 
than l/4, the temperature gradient approaches zero at 
the crack tip and no singularity exists. The power of 
singularity depicted by equation (24) is (2Jk,- l)/ 
2 JkR. For an isotropic material with k, = ke, kR 
reduces to a value of 1 and the power of singularity 
being 112 is retrieved. For strong directional materials 
with k, >> k6, the ratio of kR approaches infinity and 
the power of singularity has a limit v-alue of 1. Figure 
3 displays such a variation for the v-alues of kR being 
greater than l/4. It shows that the power of singularity 
increases as the ratio of k,fke increases. The coefficient 
C, , in this case, similar to that in case (b), involves 
both k, and k,, and cannot be determined by the pre- 
sent approach. 

CONCLUSION 

(23) 
The power of singularity of the temperature gradi- 

ent provides a physical measure for the intensification 
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of the thermal energy cumulated in the vicinity of a 
macrocrack tip. Three types of problems have been 
considered in the present analysis. They include a 
macrocrack in an infinite medium, an interfacial crack 
between dissimilar materials, and a crack in an ortho- 
tropic material. The first two problems present a 
power of singularity of the temperature gradient of 
l/2, while the third presents a result depending on the 
ratio of the principal values of the orthotropic thermal 
conductivity k,/k,. The power of singularity of the 
near-tip temperature gradient ranges from 0 to I as 
the ratio of k,/k@ varies. The near-tip temperature 
gradient is singular only if k,/k,, is greater than l/4. 
Generally speaking, the heat conduction problem 
involving a crack presents a mixed type boundary 
value problem due to the different boundary con- 
ditions specified at the crack surface and along the 
crack line in front of the crack tip. A general solution 
for this type of problem can only be made by either the 
method of dual integral equations [l] or the complex 
potential function method [4]. As fas as the power of 
singularity and the fundamental modes of angular 
distributions of the temperature gradient around the 
crack tip are concerned, Williams’ method of eigen- 
function expansions does provide a more friendly 

approach. The method, however, cannot determine 
the amplitude of the angular distribution in a general 
sense. _ . . 

For a crack propagating with a constant velocity 
t’ in a solid medium, the singular behavior of the 
temperature gradient at the crack tip can be com- 
plicated. With reference to the finite speed of heat 
propagation C in the solid, it has been shown [6] that 
the r-dependency of the temperature gradient in a 

horiibgcneous and isotropic medium intrinsically 
transits from l/J r. r”, to r as the thermal Mach num- 
ber M defined as c/C transits from the subsonic 
(LM < I), transonic (M = I), to the supersonic 
(M > I) ranges. The well-known l/Jr-type of singu- 
larity exists only if the crack tip propagates at a speed 
slower than the thermal wave speed in the solid. When 
the crack tip velocity increases to the transonic and 
supersonic ranges with M 3 I, the thermal energy does 
not have sufficient time to cumulate before the crack 
tip moves away, and the temperature gradient is 
bounded thereby. The thermal shock wave induced by 
a rapidly propagating crack tip is the central topic of 
research for this type of problems in lieu of the singu- 
lar behavior of the temperature gradient. 
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LE COMPORTEMENT SINGULIER DU GRADIENT DE TEMPERATURE AU 
VOISINAGE D’UNE MACROCRAQUELURE 

R&sum&-On analyse la singularisation du gradient de temp&rature pres d’une fente de macrocraquelure. 
Pour une craquelure dans un milieu infini, la mithode des fonctions propres de Williams est ltendues aux 
probl6mes de conduction thermique avec craquelure et on fait la comparaison avec I’approche par fonction 
complexe. Le facteur d’intensitb du gradient de temgrature (IFTG) est introduit pour quantifier 1’Cnergie 
thermique cumul6e dans le voisinage de la lhvre de la macrocraquelure. On considtre celle-ci dans des 
milieux isotropes et orthotropes, et aussi d l’interface entre deux materiaux diffkrents. On montre que la 
puissance de singularitb du gradient temp&rature n’est pas affectC par des sauts discontinus des prop&t& 
thermiques B travers l’interface, tandis que pour une craquelure dans un milieu orthotrope cela d&end du 

rapport des conductivites thenniques dans les directions principales de l’orthotropie. 

DAS SINGULiiRE VERHALTEN EINES TEMPERATURGRADIENTEN IN DER NAHE 
EINER MAKRORISSPITZE 

Zusammenfassung-In dieser Arbeit wird die Auswirkung eines singullren Temperaturgradienten an einer 
MakroriDspitze analysiert. Fiir einen RiB im unendlich ausgedehnten Medium wird das Verfahren der 
Entwicklung von Eigenfunktionen nach William ausgedehnt auf WHrmeleitprobleme in Anwesenheit eines 
Risses. Das Ergebnis wird mit dem Ansatz unter Verwendung komplexer Funktionen verglichen. Es wird 
der Intensitltsfaktor des Temperaturgradienten (IFTG) eingefiihrt, urn ein MaB fir die therm&he Energie 
geben zu k6nnen, die sich in der Umgebung einer MakroriDspitze angesammelt hat. ZusPtzlich wird die 
Stlrke der Singularitit des Temperaturgradienten fijr Risse in isotrop& und orthotropen Medien analy- 
siert, auBerdem fiir einen RiO zwischen unterschiedlichen Materialien. Es zeiat sich. dall die StPrke der 
Singularit& des Temperaturgradienten unabhangig von diskontinuierlichei Sp&gen der thermo- 
physikalischen Eigenschaften an Materialgrenzen ist, im Fall eines Risses in einem orthotropen Medium 
hiingt die Stlrke dagegen vom Verhiiltnis der W%meleitEihigkeiten in der Hauptrichtung der Material- 

orthotropie ab. 
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