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The singular behavior of the temperature gradient
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Abstract—The power of singularity of the temperature gradient at a macrocrack tip is analyzed in this
work. For a crack in an infinite medium. Williams' method of eigenfunction expansions is extended to
heat conduction problems with a crack and comparison with the complex function approach is made. The
intensity factor of temperature gradient (IFTG) is introduced to quantify the thermal energy cumulated
in the neighborhood of a macrocrack tip. As an entirety, the power of singularity of the temperature
gradient is analyzed for a crack in both isotropic and orthotropic media, and an interfacial crack between
dissimilar materials. It is shown that the power of singularity of the temperature gradient is not affected
by the discontinuous jumps of the thermal properties across the material interface, while that for a crack
in an orthotropic medium depends on the ratio of thermal conductivities in the principal directions of
material orthotropy.

INTRODUCTION

THE coNCEPT of damage tolerance is widely used in
structural design which evaluates the structural per-
formance in transferring loads under crisis sifuations.
A macrocrack is one of the most popular mechanisms
considered for this purpose and the load-bearing
capacity of the material in the neighborhood of the
crack tip is measured by the stress intensity factor
{1]. For layered composites with various stacking
sequences of the material layers, for example, the opti-
mal stacking sequence is determined such that the
stress intensity factor at the crack tip under the same
geometricai and loading conditions attains the mini-
mum value among all the possible cases with different
stacking sequences. Another approach employing the
deformation energy in the near-tip area to serve the
same purpose has been discussed in ref. [2].

When a crack tip is closely approached, due to the
abrupt change of the geometrical curvature, both the
stresses and the strain energy density approach infin-
ity. For an elastic solid, the near-tip stress behaves as
I/{/r, with r being the radial distance measured from
the crack tip, while the strain energy density dW/dV
behaves as 1/r [3]. The stress intensity and the strain
energy density factors are defined as

K=}if%\/ro'93 and S=}i£x})r(dW/dV) ¢}

with o, being the circumferential stress component.
Clearly, the concept of the intensity factors K and S
relies upon the singular behavior of the near-tip stress
and energy density.

In a parallel philosophy to the damage tolerance
concept in solid mechanics, the emergy bearing
capacity of a solid medium could be assessed by the
singular behavior of the temperature gradient in the

vicinity of a crack tip. According to a previous analysis
by Sih [4], the near-tip temperature in a homogeneous
Fourier’s solid behaves as \/r and the temperature
gradient in the radial direction consequently behaves
as 1//r. If we define the intensity factor of the tem-
perature gradient {IFTG) at the crack tip in the same
manner as those in equation (1)

IFIG = rh_.tr{x) 2JrT, @

a solid with better energy-bearing capacity should be
the one possessing a lower value of IFTG under the
same geometrical and loading conditions. Obviously,
such a concept lies again in the singular behavior of
the temperature gradient as the crack tip is closely
approached.

Bearing these observations in mind, the present
work aims at the derivation of the singular behavior
of the temperature gradient in the vicinity of a macro-
crack tip. In addition to that in an infinite medium,
the present study also includes an intecfacial crack
between dissimilar materials and the effect of material
orthotropy. A method of eigenfunction expansion
developed by Williams [5] and extended recently in
ref. [6] will be used in the analysis to determine the
power of singularity and the angular distribution of
the temperature gradient in the near-tip region with-
out attributing to the solution of dual integral equa-
tions 1] or the complex potential functions [4].

ANALYSIS

(a) A4 crack in an infinite medium

In making contact with the analysis employing the
complex potential functions [4], we first consider a
crack in an infinite medium subject to remote heat
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a  half length of the crack [m]

C,, coefficients in the series solutions, i = 14

F, eigenmode for the angular distribution of
temperature

k  thermal conductivity [ Wm~'K ']

kg ratio of the principal values of the
orthotropic thermal conductivity, &,/k,

n  integers from 0 to

go heat flux applied remotely [Wm™?)

NOMENCLATURE

T  temperature [K].

Greek symbols
6  polar angle [deg]
4, eigenvalues,n=0,1,2,...
¢ stress components [Pa].

Superscript and subscripts
X, éX/onwithn=r0

B
K stress intensity factor [Pam'’] X" physical quantity X in the material layer /,
r radial distance measured from the crack i=12
tip [m) X, component of X in the 5-direction with
S strain energy density factor [J m~7] n=r#.
fluxes ¢4 as shown in Fig. 1. The half length of the Fopo+ (A +1)?F, =0 (6)

crack is denoted by a and the solid medium in the first
case is assumed to be homogeneous and isotropic. The
temperature at the crack surface is kept at a constant
value which is assumed to be zero without loss in
generality. With respect to the polar coordinates (r, §)
centered at the crack tip, the energy equation under a
steady state is simply a Laplace equation

ViT(r,0) = T, +(IINT,+(1/r)T5 =0 (3)

and the boundary conditions to be satisfied in the
near-tip region are

T=0 atf=+n ()

The problem formulated in this manner clearly dis-
plays an eigenvalue problem. Because the Laplace
equation is homogeneous with respect to the radial
distance r, a product form for T satisfying equation
(3) can be assumed

T(r,0) = i -t E(6) %)
n=0

with 4, being the eigenvalues to be determined. Sub-
stituting equation (5) into equation (3), a second-
order ordinary differential equation governing the
function F,(0) is obtained

%
%
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Crack surface /4 _____

o ‘__ _.i
a
Half length

of the crack
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%

FIG. 1. A macrocrack with length 2« in an infinite medium
subject to symmetrical heat fluxes applied remotely.

which can be integrated directly to give
F,(0) = C,,cos [(4,+ 1)} + Cy,sin[(4,+ 1)0]. (7)

From boundary conditions (4), two algebraic equa-
tions for C,, and C,, are rendered

C,cos[(4,+ Drl+Cy,sin[(4,+ )] =0
C.cos[(4,+ D] —Cy,sin[(4,+ 1] =0 (8)

which gives the following eigenequation for the exis-
tence of a non-trivial solution:

sin[2(4,+1)na} =0 or i,+1 =n/2,
forn=0,1,2,... G

Substituting equation (9) into equation (7) and the
result into equation (5), the temperature T{r, 6) is

T(r,8) = Y r'*[C\,cos(n8/2)+C,, sin (nd/2)]

n=10
(10)

where we can show from equations (8) and (9) in a
straightforward manner that C,, = 0 for n being even
and C,, =0 for n being odd. Although the remote
heat flux applied to the solid is not incorporated in
equation (10), it provides sufficient information as far
as the near-tip temperature gradient T, is concerned.
By taking the derivative with respect to r on equation
(10) and expanding the resulting series, we have

T.(r,0) = ZC—\'/'rcos (6/2) +r°[C,, sin 0]

+r((3/2)C 3c0s (30/2)]+O0(r"*) fornz2. (11)
In the vicinity of the crack tip with r approaching

zero, clearly, the first term in equation (11) dominates
and asymptotically

T,(r.0) ~ zgl—lcos 62) asr—0. 12)

Jr
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Clearly, the temperature gradient presents a 1/\/r-
type of singularity at the crack tip. The power of
singularity of the near-tip temperature gradient is thus
1/2.

In summary, Williams' method illustrated above
reduces the crack problem from a boundary value
problem to an eigenvalue problem. The eigenvalues
obtained in this manner reveal the r-dependency of
the thermal field while the eigenfunctions relate to the
angular distributions of the thermal field around the
crack tip. The amplitude of the eigenfunction such as
the coefficient C,, in equation (12), however, cannot
be determined in general by the method. This is the
biggest disadvantage of the method in comparison
with the dual-integral equation and the complex func-
tion methods where the thermal field in the near-tip
region can be determined as an entirety. It can be seen
clearly that the remote boundary condition of g¢,, for
example, cannot be taken into account in the present
approach. The method thus implies the same singular
behavior of the temperature gradient in the near-tip
region for the cracked solid subject to a remote heat
flux g, or a temperature gradient 7°,.

Nevertheless, the coefficient C,, could be deter-
mined from the consideration of dimensional con-
sistency under limited conditions. As shown by the
configuration of the cracked solid in Fig. 1, the co-
efficient C,, should be a function of the haif erack
length g, the thermal conductivity &, and the heat flux
qoapplied remotely. This observation essentially leads
to C,, = go/a/k which has dimensions of degm~"2.
For the same cracked solid subject to a remote tem-
perature gradient T, as another example, the co-
efficient C,, takes the form of \/ a(T?,) from the same
consideration. With these expressions of C,,. the
results shown by equation (12) are the same as those
obtained by Sih [4] employing the Muskhelishvili for-
mulation of the analytic complex functions. In front
of the crack tip at 6 = 0, the temperature gradient T,
reaches a maximum value and the intensity factor
of the temperature gradient in the two cases can be
obtained as

IFTG = lim2,/rT, = C,, =

{ gon/ak, for the case of remote heat flux

(T%)\/a, forthecase of remote temperature gradient.

(13)

(b) An interfacial crack between dissimilar materials

By extending the method of eigenfunction expan-
sions adopted in (a), the singular behavior of the
near-tip temperature gradient can be analyzed for an
interfacial crack between dissimilar materials, as
shown by Fig. 2. The thermal conductivity for the two
contact material layers is respectively k" and k.
Under a steady state, the temperature distribution in
each material layer is represented by the combination
of equations (5) and (7)
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Interfacial Crack / Material 1, k®
aY)
—

FiG. 2. An interfacial crack between dissimilar materials with
thermal conductivities k" and k%,

L bbb

Material 2, k@

T(r,0) = Y, r»*'[C,cos (4, +1)0

1=0

+C,,5in (4, +1)0], for material |

TO(r,0) = 7_ r*Y[C,, cos (4, +1)0

n=0

+Cy,sin(4,+1)8], for material 2. (14)

Determination of the eigenvalues 4, in this case
depends on the following boundary conditions::

T =0 atf=n, thetop surface of the crack
T?®=0 at@= —nr, the bottom surface of the crack
TV =72 and KOTY =k2TY

at 0 = 0, the material interface. (15)

Substituting equations (14) into equations (15) renders

sin[2(4,+Dx]=0 or i,+1=n/2, for n=0, 1, 2,...

Cln = Clna CM = [k(l)/k(z)]clm Cln= 0
for n being even integers,
C,, =0 for n being odd integers. (16)

Note that the eigenvalues 4, obtained in this case are
the same as those obtained in the previous case, refer
to equation (9), and consequently the r-dependency
of the near-tip temperature and its gradient is not
affected by the thermal properties of the contacting
material layers. With equations (15) and (16), the
asymptotic form of the temperature gradient in each
material layer can be expanded to give

C
TV = —Lcos (8/2) +r°(C,, sin 6]
r

2
+rl(3/2)C 13 cos (36/2)] + O(r'?)

5 C oy
T = —Lcos (0/2) +r°[C,, (k" k®) sin 6]
r

2y
+rl(3/2)C15c0s 3O/]+0¢ Y (17)

with n > 2. In the near-tip region with r approaching
zero, similarly, the asymptotic expressions for the tem-
perature gradients are

C C
TW~ —eos(8/2) and TP ~—lcos(6/2
=3 6/2) 2r 6/2)

(18)

Equation (18) has exactly the same form as equation

as r— 0.
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(12) for a crack in a homogeneous medium. It implies
that the power of singularity at the interfacial crack
tip is not affected by the thermal properties of the
material layers in contact. Except for the involvement
in the amplitude of C,,, the effect of the thermal
conductivities, refer to equation (17), enters the higher
order eigenmodes of the angular distribution of 7
which vanishes as r approaches zero. Due to the pres-
ence of two values of thermal conductivity in each
material layer in this case, unfortunately, the co-
efficient C,, cannot be determined by the same con-
sideration of dimensional consistency as that given in
case {a). The thermal conductivity & involved in the
first of equations (13) for the present case should be
replaced by an effective value which is a combined
function of both k" and k‘?. Its exact form, however,
cannot be determined from this approach.

(c) A crack in an orthotropic material

For a macrocrack in an orthotropic medium with
k. and k, being the principal values along the axes
of material orthotropy, the energy equation can be
written as

T+ (UNT, +(ke) ' (1/r)Te =0 (19)

with kg = k,/ko. Assuming the same form as equation
(5) for T(r, 8), the differential equation governing the
function of F,(#) in this case takes the fofm®

Fn,99+kk(in+l)an =O (20)

which has the solution
Fo(8) = Cy,cos [k 4y + 1)0]
+Cy,sin[\kr(4,+1)0].  (21)

From the boundary conditions at the crack surfaces,
equation (4), the eigenequation for the eivenvalues 4,
is
sin[2,/kg (4, + D] =0 or i, +1 = n/2/k,
forn=0,1,2....

and the coefficients C,, =0 for n being even and
C,, = 0 for n being odd. Equation (22) clearly indi-
cates that the eigenvalues, and hence the r-dependency
of the temperature gradient, depend on the ratio of the
principal values of orthotropic thermal conductivity.
Substituting the eivenvalues in equation (22) into the
series for the temperature gradient, it follows that
= L rit - Wkivke gos (6/2)

2/ks

o+ & rit ~Jka)i Jkr sin (9)

R

22

Nd

+ 3Cu F3=2/k Nk cos (30/2)

2 ke

C N i e
o+ .z__ﬁ,c— k)i k. sin (29) donen,

Tk 23
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FiG. 3. The variation of the power of singularity of the
near-tip temperature gradient T, with respect to the ratio of
kr(ke = k,/ky).

The singular terms in equation (23) depend on the
range of the conductivity ratio kg. For 0 < ky < 1/4,
all the terms are well behaved and the temperature
gradient T', approaches zero in the near-tip region
with r - 0. For 1/4 < kg < 1, the first term becomes
singular while the other terms approach zero as r
approaches zero. The asymptotic form of equation
(23) in this case is thus

T, ~ Cl" ro k- Dilkeeos (0/2), as r—0. (24)
2 kg

In the range of | < kp < 2.25, the first two terms
in equation (23) become singular but the first term
diverges at a faster rate than the second term and the
leading term in equation (23) again dominates in the
near-tip region. This argument can be applied to the
subsequent terms in equation {23) and itis informative
to conclude that the near-tip temperature gradient is
indeed represented by equation (24) in general.

In the present case with material orthotropy, the
singularity of the temperature gradient exists at the
crack tip only if

2/kg > 1 orkjky> 1.

For the orthotropic material with kp being smaller
than 1/4, the temperature gradient approaches zero at
the crack tip and no singularity exists. The power of
singularity depicted by equation (24) is (2\/kr—1)/
2,/kg. For an isotropic material with k, = ky, kg
reduces to a value of 1 and the power of singularity
being 1/2 is retrieved. For strong directional materials
with k, » k;, the ratio of kg approaches infinity and
the power of singularity has a limit value of 1. Figure
3 displays such a variation for the values of kg being
greater than 1/4. It shows that the power of singularity
increases as the ratio of &,/k, increases. The coefficient
C,, in this case, similar to that in case (b), involves
both &, and k&, and cannot be determined by the pre-
sent approach.

(25)

CONCLUSION

The power of singularity of the temperature gradi-
ent provides a physical measure for the intensification
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of the thermal energy cumulated in the vicinity of a
macrocrack tip. Three types of problems have been
considered in the present analysis. They include a
macrocrack in an infinite medium, an interfacial crack
between dissimilar materials, and a crack in an ortho-
tropic material. The first two problems present a
power of singularity of the temperature gradient of
1/2, while the third presents a result depending on the
ratio of the principal values of the orthotropic thermal
conductivity k,/k,. The power of singularity of the
near-tip temperature gradient ranges from 0 to 1 as
the ratio of k,/k, varies. The near-tip temperature
gradient is singular only if k,/k, is greater than 1/4.
Generally speaking, the heat conduction problem
involving a crack presents a mixed type boundary
value problem due to the different boundary con-
ditions specified at the crack surface and along the
crack line in front of the crack tip. A general solution
for this type of problem can only be made by either the
method of dual integral equations [1] or the complex
potential function method [4]. As fas as the power of
singularity and the fundamental modes of angular
distributions of the temperature gradient around the
crack tip are concerned, Williams’ method of eigen-
function expansions does provide a more friendly
approach. The method, however, cannot determine
the amplitude of the angular distribution in a general
sense.

For a crack propagating with a constant velocity
v in a solid medium, the singular behavior of the
temperature gradient at the crack tip can be com-
plicated. With reference to the finite speed of heat
propagation C in the solid, it has been shown [6] that
the r-dependency of the temperature gradient in a

~- -
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hoifidgeneous and isotropic medium intrinsically
transits from 1/,/r, r° to r as the thermal Mach num-
ber M defined as ¢/C transits from the subsonic
(M < 1), transonic (M =1), to the supersonic
(M > 1) ranges. The well-known 1/,/r-type of singu-
larity exists only if the crack tip propagates at a speed
slower than the therma! wave speed in the solid. When
the crack tip velocity increases to the transonic and
supersonic ranges with M > 1, the thermal energy does
not have sufficient time to cumulate before the crack
tip moves away, and the temperature gradient is
bounded thereby. The thermal shock wave induced by
a rapidly propagating crack tip is the central topic of
research for this type of problems in lieu of the singu-
lar behavior of the temperature gradient.
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LE COMPORTEMENT SINGULIER DU GRADIENT DE TEMPERATURE AU
VOISINAGE D’UNE MACROCRAQUELURE

Résumé—On analyse la singularisation du gradient de température prés d’une fente de macrocraquelure.
Pour une craquelure dans un milieu infini, la méthode des fonctions propres de Williams est étendues aux
problémes de conduction thermique avec craquelure et on fait la comparaison avec I'approche par fonction
complexe. Le facteur d'intensité du gradient de température (IFTG) est introduit pour quantifier I'énergie
thermique cumulée dans le voisinage de la lévre de la macrocraquelure. On considére celle-ci dans des
milieux isotropes et orthotropes, et aussi 4 I'interface entre deux matériaux différents. On montre que la
puissance de singularité du gradient température n’est pas affectée par des sauts discontinus des propriétés
thermiques 4 travers l'interface, tandis que pour une craquelure dans un milieu orthotrope cela dépend du
rapport des conductivités thermiques dans les directions principales de I'orthotropie.

DAS SINGULARE VERHALTEN EINES TEMPERATURGRADIENTEN IN DER NAHE
EINER MAKRORISSPITZE

Zusammenfassung—In dieser Arbeit wird die Auswirkung eines singuliren Temperaturgradienten an einer
MakroriBspitze analysiert. Fiir einen RiB im unendlich ausgedehnten Medium wird das Verfahren der
Entwicklung von Eigenfunktionen nach William ausgedehnt auf Wirmeleitprobleme in Anwesenheit eines
Risses. Das Ergebnis wird mit dem Ansatz unter Verwendung komplexer Funktionen verglichen. Es wird
der Intensititsfaktor des Temperaturgradienten (IFTG) eingefthrt, um ein Mab fiir die thermische Energie
geben zu konnen, die sich in der Umgebung einer MakroriBspitze angesammelt hat. Zusitzlich wird die
Stirke der Singularitit des Temperaturgradienten fiir Risse in isotropen und orthotropen Medien analy-
siert, auBerdem fiir einen RiB zwischen unterschiedlichen Materialien. Es zeigt sich, daB die Stirke der
Singularitit des Temperaturgradienten unabhingig von diskontinuierlichen Spriingen der thermo-
physikalischen Eigenschafien an Materialgrenzen ist, im Fall eines Risses in einem orthotropen Medium
hingt die Stirke dagegen vom Verhéltnis der Warmeleitféhigkeiten in der Hauptrichtung der Material-
orthotropie ab.
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CHHTYJIAHOE NMOBEJAEHHE TEMIIEPATYPHOI'O 'PAJMEHTA BBJIH3H BEPIHHBI
MAKPOTPEOIHHB!

ANROTAIRS—AHATH3HPYETCS CTENCHb CHEIY/ISPHOCTH TCMICPATYDHOTO IPAZHCHTA BOIH3IH BEpLUMHL
MaxpoTpemHLl. Jnn Tpermen B GeCKOHETHOMR Cpelie METOM PaNIOReHMH 10 COSCTBEHEBIM QyHEIHAM,
npeanoxeHrbilt BiumscoM, IpEMEHSETCS K 3a1298M TEMIONPOBOAHOCTH B MPOBOIHTCH €TI0 CPABHCHHE C
DOAXOAOM Ha OCHOBE KOMIUTCXCHMX (yHKuEA. [UIA XONHYECTBEHHOTO ONpeNceHHS TENOBON JHEprum,
HAKONJICHHOH B6/THIA BCPIIMHE MAKDOTPEIIHHL, BBOIMTCH XOIDPHULHEHT HHTEHCHBHOCTH TeMICPATYP-
Horo rpamuenTa (IFTG). Crencub CHETY IAPHOCTH TEMNCPATYPHOTO FPAJHEHTA AHAMMIAPYETCA B LETIOM
KaK JUIS TPCUIHHM B H3OTPOOHBIX H OPTOTPOMHBIX CPCA2X, TAK H [UIN IPAHHTHOR TpEIIRHE MEXIy
pajHopomuuMa MaTepEanami. I1oxainiBacTcR, 9TO CTCHCHb CHHTYJANPHOCTH TEMIEPATYPHOrO rpa-
JUACHTa HE 3aBHCHT OT CKa4k0O5paIHBIX HIMCHCHHH TEIIOBLIX CBOACTB Ha rPaHENC pasfeia MaTepha-
JIOB, HO B CNydae TPCIIHHB B OPTOTPONHOH Cpefie¢ 3aBHCHT OT OTHOUWICHAN KO3hHUHEHTOB
TCILIONPOBOAHOCTH B OCHOBHBIX HAMPABICHHAX OPTOTPOIH MATEPAANA,



